In force

Monitoring of Endogenous Steroids in Female Dried Blood Spot Samples (Continuation of 17D18MS)

Principal investigator
M. Saugy
Country
Switzerland
Institution
Laboratoire Suisse d'Analyse du Dopage
Year approved
2021
Status
Live
Themes
Athlete Biological Passport

Project description

Code: 21T04MS 

Blood steroid profiling using ultra-high performance liquid chromatography (UHPLC)-MS/MS has been proposed as a potential additional evidence to support the scenario of an endogenous prohibited substance administration. Moreover, the blood matrix is more informative for the correlation between hormone concentration and the physiological responses. Serum steroid profiling has been proven particularly useful for T detection in female subjects in whom menstrual fluctuations may lead to a great source of variation for urinary biomarkers disrupting the sensitivity of their longitudinal monitoring. In the clinical context, profiling of a panel of steroids represent also a great asset for the characterization of possible alterations of steroid metabolism in endocrine syndromes. 

A primary drawback of this approach based on blood matrix, principally in the anti-doping context, is that it requires invasive venous blood sampling. Specialized health-care personnel usually perform this procedure and samples have to be transported under specific conditions in a short time window involving important logistic costs. To reduce the large expenses associated with the collection and shipment of this matrix, dried blood spots (DBS) with the transfer of a limited volume of capillary blood onto a filter paper or similar matrix offer a convenient and more affordable alternative. The applicability of DBS in the anti-doping context has been investigated in various studies for either direct detection of prohibited substances or indirection detection through potential biomarkers . In particular, a method using microsampling and GC-MS/MS was recently developed for the quantification of T and eight synthetic anabolic androgenic steroid (AAS). However, this method was limited to the quantification of only one endogenous AAS (EAAS) and could therefore be hardly applied in the clinical context for the monitoring of steroidogenesis disorders.